

Overview

The LC75823E and LC75823W are general-purpose LCD display drivers that can be used for frequency display in microprocessor-controlled radio receives and in other display applications. In addition to being able to directly drive up to 156 LCD segments.

Features

- Supports both $1 / 3$ duty $1 / 2$ bias and $1 / 3$ duty $1 / 3$ bias LCD drive of up to 156 segments under serial data control.
- Serial data input supports CCB^{*} format communication with the system controller.
- Serial data control of the power-saving mode based backup function and all the segments forced off function
- High generality since display data is displayed directly without decoder intervention
- The INH pin can force the display to the off state.
- The LCD drive bias voltage can be provided internally or externally.
- Power supply voltage: 4.5 to 6 V
- The LC75823E/W is a low-voltage version of LC75850E/W. (Pin compatible)
- CCB is a trademark of SANYO ELECTRIC CO., LTD. - CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$V_{\text {DD }}$ max	$V_{D O}$	-0.3:0 +6.5	V
Input voltage	$V_{\text {IN }} 1$	CE, CL, DI, INH	-0.3 to +6.5	V
	$V_{1 N^{2}}$	OSC	-0.3 to $V_{D D}+0.3$	V
Output voltage	$V_{\text {OUT }}$	OSC	-0.3 to $V_{D D}+0.3$	V
Output current	lout 1	S1 to S52	300	$\mu \mathrm{A}$
	Jout 2	COM 1 to COM3	3	mA
Allowable power dissipation	Pd max	$\mathrm{Ta}=85^{\circ} \mathrm{C}$	200	mW
Operating temperature	Topr		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +125	${ }^{\circ} \mathrm{C}$

SANYO Electric Co., Ltd. Semiconductor Business Headquarters

 TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku. TOKYO. 110 JAPAN52096HA (OT)/N1594TH (OT) No. 4801-1/12

Allowable Operatling Ranges at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply voltage	$V_{\text {DD }}$	$V_{\text {DO }}$	4.5		6.0	V
Input voltage	$V_{\text {DO }}{ }^{1}$	V_{001}		$2 / 3 V_{D D}$	6.0	V
	$V_{D D}{ }^{2}$	$V_{00}{ }^{2}$		$1 / 3 \mathrm{~V}_{\mathrm{DD}}$	6.0	V
Input high level voluage	$\mathrm{V}_{\text {IH }}$	CE, CL, DI, INTH	4.0		6.0	v
Input low lever voltage	V_{LL}	CE, CL, DI, $\overline{\mathrm{NH}}$	0		0.7	V
Recommended extemal resistance	Rosc	OSC		47		ka
Recommended extemal capacitance	Cose	OSC		1000		pF
Guaranteed oscillator range	fosc	OSC	19	38	76	kHz
Data setup time	tds	CL, DI: Figure 2	100			ns
Data hold time	$\mathrm{t}_{\text {dh }}$	CL. DI: Flgure 2	100			ns
CE wait time	top	CE, CL: Figure 2	100			ns
CE setup time	${ }_{\text {cs }}$	CE, CL: Figure 2	100			ns
CE hold time	${ }_{\text {ch }}$	CE, CL: Figure 2	100			ns
High-level clock putse width	$\mathrm{t}_{6 \mathrm{H}}$	CL: Figure 2	100			ns
Low-level clock pulse width	L L_{1}	CL: Figure 2	100			ns
Rise time	${ }_{4}$	CE, CL, DI: Figure 2		100		ns
Fall time	4	CE, CL, DI: Figure 2		100		ns
NH switching time	12	$\overline{\text { INH, CE:Figure } 3}$	10			μs

Electrical Characteristics for the Allowable Operating Ranges

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Input high level current	$\mathrm{IIH}^{\text {H }}$	CE, CL, DI, $\overline{\mathrm{NH}}: \mathrm{V}_{1}=6 \mathrm{~V}$			5	$\mu \mathrm{A}$
Input law level current	ILL	$\mathrm{CE}, \mathrm{CL}, \mathrm{DI}, \overline{\mathrm{INH}}: \mathrm{V}_{1}=0 \mathrm{~V}$	-5			$\mu \mathrm{A}$
Oscillator frequency	fosc	OSC; $\mathrm{P}_{\text {OSC }}=47 \mathrm{ka}$ COSC $=1000 \mathrm{pF}$		38		kHz
Hysteresis width	V_{H}	CE, CL, DI, ITNH: $\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	0.3			V
Output high level voltage	$\mathrm{V}_{\mathrm{OH}} 1$	S1 to S52; $\mathrm{I}_{0}=-20 \mu \mathrm{~A}$	$V_{D D}-1.0$			v
Output low level voliage	VOL^{1}	S1 :0 S52; $\mathrm{I}_{0}=20 \mu \mathrm{~A}$			1.0	V
Outpul high level voltage	$\mathrm{V}_{\mathrm{OH}}{ }^{2}$	COM1 to CONK3: $1_{0}=-100 \mu \mathrm{~A}$	$V_{O D}-1.0$			V
Output low level voltage	$\mathrm{V}_{\mathrm{OL}} 2$	COM1 to COMA; $10=100 \mu \mathrm{~A}$			1.0	V
Intermediate level voltage**	$V_{\text {MID }}{ }^{1}$	1/2 bias, COM1 to COM3; $l_{0}= \pm 100 \mu \mathrm{~A}$	$1 / 2 V_{D D} \pm 1.0$			V
	$V_{\text {MID }} 2$	1/3 bias, COM1 to COM3: $l_{0}= \pm 100 \mu \mathrm{~A}$	$2 / 3 V_{D D} \pm 1.0$			V
	$V_{\text {MID }}{ }^{3}$	$1 / 3$ bias, COM 1 to COM3: $l_{0}= \pm 100 \mu \mathrm{~A}$	$1 / 3 V_{D D} \pm 1.0$			V
	$V_{M 10}{ }^{4}$	1/3 bias, S1 to S52; $I_{0}= \pm 20 \mu \mathrm{~A}$	$2 / 3 V_{D D} \pm 1.0$			V
	$V_{\text {MID }} 5$	$1 / 3 \text { bias, S1 to } \mathrm{S} 52 ;$ $l_{0}= \pm 20 \mu \mathrm{~A}$	$1 / 3 V_{D D} \pm 1.0$			v
Supply current	IDD 1	Power saving mode			5	$\mu \mathrm{A}$
	${ }_{100}{ }^{2}$	$f=38 \mathrm{kHz}, 1 / 2$ bias, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		400	800	$\mu \mathrm{A}$
	${ }_{\text {bo }} 3$	$f=38 \mathrm{kHz}, 1 / 3$ bias, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		300	600	$\mu \mathrm{A}$
	IDD^{2}	$f=38 \mathrm{kHz}, 1 / 2$ bias, $\mathrm{V}_{D D}=6 \mathrm{~V}$		650	1300	$\mu \mathrm{A}$
	${ }_{\text {DD }}{ }^{3}$	$f=38 \mathrm{kHz}, 1 / 3$ bias, $V_{D D}=6 \mathrm{~V}$		580	1200	$\mu \mathrm{A}$

Note: * Except the bias voltage generation divider resistors that are built into $V_{D O}{ }^{1}$ and $V_{D D}{ }^{2}$. (See figure 1.)

Figure 1

2. When CL is stopped at the high level

Figure 2

PIn Assignment

Block Diagram

Pin Functlons

Pin	Pin No.	Function		Active	vo	Handling when unused
S1 to S52	1 to 52	Segment outputs for displaying the display data transferred by serial data input.		-	0	Open
COM1 COM2 СОМ3	$\begin{aligned} & 53 \\ & 54 \\ & 55 \end{aligned}$	Common driver outputs. The frame frequency fols given by: fo $=\left(\right.$ fosc $^{2384)} \mathrm{Hz}$		-	0	Open
OSC	61	Oscillator connection An oscillator circult is formed by connecting an external resistor and capacitor to this pin.		-	vo	$V_{D D}$
$\begin{aligned} & \mathrm{CE} \\ & \mathrm{CL} \\ & \mathrm{DI} \end{aligned}$	626364	Serial data transfer inputs. These pins are connected to the control microprocessor.	CE: chip enable	H	1	GND
			CL: synchronization clock	$\underline{1}$		
			DI: transfer data	-		
$\overline{\mathbb{N H}}$	57	Display off control input $-\overline{\mathbb{N H}}=$ low (V_{Ss}) \ldots......Display forced off (S 1 to $\mathrm{S} 52, \mathrm{COM} 1$ to COM3 = low) - $\overline{\mathbb{N H}}=$ high $\mathrm{N}_{\text {OD }} \boldsymbol{j}$.....Display on Note that serial data transfers can be performed when the display is forced off,		L	1	GND
$V_{D D}{ }^{1}$	58	Used for the $2 / 3$ bias voltage when bias voltages are provided exiernally. Connect to $V_{D D} 2$ when $1 / 2$ bias is used.		-	1	Open
$V_{D D}{ }^{2}$	59	Used for the $1 / 3$ bias voltage when bias volages are provided externally. Connect to $V_{D D} 1$ when $1 / 2$ bias is used.		-	1	Open
$V_{D D}$	56	Power supply. Provide a valtage of between 4.5 and 6.0 V .		-	-	-
$V_{S S}$	60	Ground. Connect this pin to the system ground.		-	-	-

Serlal Data Transfer Format

1. When CL is stopped at the low level
ce \qquad $\sqrt{ }$
cL \qquad
01

* don't care

2. When CL is stopped at the high level
cE \qquad $\sqrt{ }$
a \qquad

or

- CCB address . 41 H
- D1 to D156. Display data

Dn $(\mathrm{n}=1$ to 156$)=1$..........Display on
Dn $(\mathrm{n}=1$ to 156) $=0 \ldots \ldots . . .$. . Display off

- DR

2-bias drive or $1 / 3$-bias drive switching control data

- SC.
.Segments on/off control data
- BU
.Normal mode/power-saving mode control data

Serlal Data Transfer Examples

- When 63 segments are used

63 bits of display data (D94 to D156) must be sent.

Control Data Functlons

1. DR: $1 / 2$-bias drive or $1 / 3$-bias drive switching control data This control data bit selects either $1 / 2$-bias drive or $1 / 3$-bias drive.

DR	Drive rype
0	$1 / 2$-bias drive
1	$1 / 3$-bias drive

2. SC: Segments on/off control data

This control data bit controls the on/off state of the segments.

SC	Display state
0	On
1	Off

However, note that when the segments are turned off by setting SC to 1 , the segments are turned off by outputting segment off waveforms from the segment output pins.
3. BU: Normal mode/power-saving mode control data

This control data bit selects either normal mode or power-saving mode.

$B U$	
0	Normal mode
1	Power-saving mode. In this mode the OSC pin oscillator Is stopped and the common and segment pins output $V_{\text {SS }}$ levels.

Display Data to Segment Output PIn Correspondence

Segment output pin	COM3	COM2	COM1
S1	D1	D2	D3
52	D4	D5	D6
S3	D7	D8	D9
S4	D10	D11	D12
S5	D13	D14	D15
S6	D16	D17	D18
S7	D19	D20	D21
S8	D22	D23	D24
S9	D25	D26	D27
S10	D28	D29	D30
S 11	D31	D32	D33
S12	D34	D35	D36
S 13	D37	D38	D39
S14	D40	D41	D42
S15	D43	D44	D45
S16	D46	D47	D48
S17	D49	D50	D51
S18	D52	D53	D54
519	D55	D56	D57
S20	D58	D59	D60
S21	D61	D62	D63
S22	D64	D65	D66
S23	D67	D68	D69
S24	D70	D71	D72
S25	D73	D74	D75
S26	D76	D77	D78

Segment output pin	COM 3	COM2	COM1
S27	D79	D80	D81
S28	082	083	D84
S29	D85	D86	D87
S30	DB8	D89	D90
531	D91	D92	D93
S32	D94	095	D96
S33	D97	D98	D99
S34	0100	D109	D102
S35	D103	D104	D105
S36	D106	D107	D108
S37	D109	D110	D111
S38	D112	D113	D114
S39	D115	D116	D117
S40	D118	0119	D120
S41	D121	D122	0123
S42	D124	D125	D126
S43	D127	D128	D129
S44	D130	D131	D132
S45	D133	D134	D135
S46	D136	D137	D138
S47	D139	D140	D141
S48	D142	0143	D144
S49	D145	D146	D147
S50	D148	D149	D150
S51	D151	D152	0153
S52	D154	D155	D156

For example, the table below lists the segment output states for the S 11 output pin.

Display data			Segment output pin (S11) state
D31	D32	D33	
0	0	0	The LCD segments corresponding to COM1 to COM3 are off.
0	0	1	The LCD segments corresponding to COM1 is on.
0	1	0	The LCD segments corresponding to COM2 is on.
0	1	1	The LCD segments corresponding to COM1 and COM2 are on.
1	0	0	The LCD segments corresponding to COM3 is on.
1	0	1	The LCD segments corresponding to COM1 and COM3 are on.
1	1	0	The LCD segments corresponding to COM2 and COM3 are on.
1	1	1	The LCD segments corresponding to COM1 to COM3 are on.

1/2 Blas, 1/3 Duty Drive Technique

$\overline{\mathrm{INH}}$ and Display Control

Since the LSI intemal data (D1 to D156, DR, SC, and BU) is undefined when power is first applied, the display is off (S 1 to $\mathrm{S} 52, \mathrm{COM} 1$ to $\mathrm{COM} 3=$ low) by setting the $\overline{\mathrm{INH}}$ pin low at the same time as power is applied. Then, meaningless display at the power-on can be prevented by transferring serial data from the controller while the display is off and setting INH pin high after the transfer completes. (See Figure 3.)

Figure 3

Sample Application Clrcult 1
1/3 Bias (for use with small panels)

Sample Applicatlon Clrcult 2

1/3 Bias (for use with normal size panels)

Sample Application Circuit 3

1/3 Bias (for use with large panels)

001269

No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss

- Anyone purchasing any products described or contained herein for an above-mentioned use shall
(1) Accept full responsibility and indemnity and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 1996. Specifications and information herein are subject to change without notice.

